Наименьшее общее кратное и наибольший общий делитель. Признаки делимости и методы группировки (2020)

Это числа, которые используются при счете: 1, 2, 3... и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N .

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными , например, +1 и -1, +5 и -5. Знак "+" обычно не пишут, но предполагают, что перед числом стоит "+". Такие числа называются положительными . Числа, перед которыми стоит знак "-", называются отрицательными .

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z .

Рациональные числа

Это конечные дроби и бесконечные периодические дроби. Например,

Множество рациональных чисел обозначается Q . Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J .

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R .

Округление чисел

Рассмотрим число 8,759123... . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых - после запятой две цифры; до тысячных - три цифры и т.д.

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Рассмотрим пример:
Днем на улице была температура 3 градуса. К вечеру температура снизилась на 3 градуса.
3-3=0
На улице стало 0 градусов. А ночью температура снизилась на 4 градуса и стало показывать на термометре -4 градуса.
0-4=-4

Ряд целых чисел.

Натуральными числами мы такую задачу описать мы не сможем, рассмотрим эту задачу на координатной прямой.

У нас получился ряд чисел:
…, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …

Этот ряд чисел называется рядом целых чисел .

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами . А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

– это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Например:
Возьмем целые числа от -2 до 4. Все числа, стоящие между этими числами, входят в конечное множество. Наше конечное множество чисел выглядит так:
-2, -1, 0, 1, 2, 3, 4.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.


Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.

Число - важнейшее математическое понятие, меняющееся на протяжении веков.

Первые представления о числе возникли из счета людей, животных, плодов, различных изделий и пр. Результатом являются натуральные числа: 1, 2, 3, 4, ...

Исторически первым расширением понятия числа является присоединение к натуральному числу дробных чисел.

Дробью называется часть (доля) единицы или несколько равных ее частей.

Обозначаются: , где m, n - целые числа;

Дроби со знаменателем 10n , где n - целое число, называются десятичными : .

Среди десятичных дробей особое место занимают периодические дроби : - чистая периодическая дробь, - смешанная периодическая дробь.

Дальнейшее расширение понятия числа вызвано уже развитием самой математики (алгебры). Декарт в XVII в. вводит понятие отрицательного числа .

Числа целые (положительные и отрицательные), дробные (положительные и отрицательные) и нуль получили название рациональных чисел . Всякое рациональное число может быть записано в виде дроби конечной и периодической.

Для изучения непрерывно изменяющихся переменных величин оказалось необходимым новое расширение понятия числа - введение действительных (вещественных) чисел - присоединением к рациональным числам иррациональных: иррациональные числа - это бесконечные десятичные непериодические дроби.

Иррациональные числа появились при измерении несоизмеримых отрезков (сторона и диагональ квадрата), в алгебре - при извлечении корней , примером трансцендентного, иррационального числа являются π, e .

Числа натуральные (1, 2, 3,...), целые (..., –3, –2, –1, 0, 1, 2, 3,...), рациональные (представимые в виде дроби) и иррациональные (не представимые в виде дроби) образуют множество действительных (вещественных) чисел.

Отдельно в математике выделяют комплексные числа.

Комплексные числа возникают в связи с задачей решения квадратных для случая D < 0 (здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

Комплексные числа записываются в виде: z=a + bi . Здесь a и b действительные числа , а i мнимая единица, т. e . i 2 = –1. Число a называется абсциссой , a b – ординатой комплексного числа a + bi . Два комплексных числа a + bi и a – bi называются сопряжёнными комплексными числами.

Свойства:

1. Действительное число а может быть также записано в форме комплексного числа: a + 0i или a – 0i . Например 5 + 0i и 5 – 0i означают одно и то же число 5 .

2. Комплексное число 0+ bi называется чисто мнимым числом . Запись bi означает то же самое, что и 0+ bi .

3. Два комплексных числа a + bi и c + di считаются равными, если a = c и b = d . В противном случае комплексные числа не равны.

Действия:

Сложение. Суммой комплексных чисел a + bi и c + di называется комплексное число (a + c ) + (b + d )i . Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Вычитание. Разностью двух комплексных чисел a + bi (уменьшаемое) и c + di (вычитаемое) называется комплексное число (a – c ) + (b – d )i . Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Умножение. Произведением комплексных чисел a + bi и c + di называется комплексное число:

(ac – bd ) + (ad + bc )i . Это определение вытекает из двух требований:

1) числа a + bi и c + di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = –1.

П р и м е р. (a+ bi )(a – bi )= a 2 + b 2 . Следовательно, произведение двух сопряжённых комплексных чисел равно действительному положительному числу.

Деление. Разделить комплексное число a + bi (делимое) на другое c + di (делитель) - значит найти третье число e + f i (чатное), которое будучи умноженным на делитель c + di , даёт в результате делимое a + bi . Если делитель не равен нулю, деление всегда возможно.

П р и м е р. Найти (8 + i ) : (2 – 3i ) .

Р е ш е н и е. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3i и выполнив все преобразования, получим:

Задание 1: Сложите, вычтите, умножьте и разделите z 1 на z 2

Извлечение корня квадратного: Реши уравнение x 2 = -a. Для решения данного уравнения мы вынуждены воспользоваться числами нового типа – мнимые числа . Таким образом, мнимым называется число, вторая степень которого является числом отрицательным . Согласно этому определению мнимых чисел мы можем определить и мнимую единицу :

Тогда для уравнения x 2 = – 25 мы получаем два мнимых корня:

Задание 2: Реши уравнение:

1) x 2 = – 36; 2) x 2 = – 49; 3) x 2 = – 121

Геометрическое представление комплексных чисел. Действительные числа изображаются точками на числовой прямой:

Здесь точка A означает число –3, точка B –число 2, и O –ноль. В отличие от этого комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b . Эта система координат называется комплексной плоскостью .

Модулем комплексного числа называется длина вектора OP , изображающего комплексное число на координатной (комплексной ) плоскости. Модуль комплексного числа a + bi обозначается | a + bi | или) буквой r и равен:

Сопряжённые комплексные числа имеют одинаковый модуль.

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат По осям нужно задать размерность, отмечаем:

е
диницу по действительной оси; Re z

мнимую единицу по мнимой оси. Im z

Задание 3. Построить на комплексной плоскости следующие комплексные числа: , , , , , , ,

1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.

Так, если говорят, что в классе есть 29 учеников, то число 29 - точное. Если же говорят, что расстояние от Москвы до Киева равно 960 км, то здесь число 960 - приближенное, так как, с одной стороны, наши измерительные инструменты не абсолютно точны, с другой стороны, сами города имеют некоторую протяженность.

Результат действий с приближенными числами есть тоже приближенное число. Выполняя некоторые действия над точными числами (деление, извлечение корня), можно также получить приближенные числа.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов;

2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата;

3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.

2. Округление. Одним из источников получения приближенных чисел является округление. Округляют как приближенные, так и точные числа.

Округлением данного числа до некоторого его разряда называют замену его новым числом, которое получается из данного путем отбрасывания всех его цифр, записанных правее цифры этого разряда, или путем замены их нулями. Эти нули обычно подчеркивают или пишут их меньшими. Для обеспечения наибольшей близости округленного числа к округляемому следует пользоваться такими правилами: чтобы округлить число до единицы определенного разряда, надо отбросить все цифры, стоящие после цифры этого разряда, а в целом числе заменить их нулями. При этом учитывают следующее:

1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком);

2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком).

Покажем это на примерах. Округлить:

а) до десятых 12,34;

б) до сотых 3,2465; 1038,785;

в) до тысячных 3,4335.

г) до тысяч 12375; 320729.

а) 12,34 ≈ 12,3;

б) 3,2465 ≈ 3,25; 1038,785 ≈ 1038,79;

в) 3,4335 ≈ 3,434.

г) 12375 ≈ 12 000; 320729 ≈ 321000.

3. Абсолютная и относительная погрешности. Разность между точным числом и его приближенным значением называется абсолютной погрешностью приближенного числа. Например, если точное число 1,214 округлить до десятых, получим приближенное число 1,2. В данном случае абсолютная погрешность приближенного числа 1,2 равна 1,214 - 1,2, т.е. 0,014.

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу, которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например, число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01, так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01. Здесь граничная абсолютная погрешность равна 0,01 * .

Граничную абсолютную погрешность приближенного числа а обозначают символом Δa . Запись

x a (±Δa )

следует понимать так: точное значение величины x находится в промежутке между числамиа – Δa иа + Δа , которые называют соответственно нижней и верхней границейх и обозначают НГx ВГх .

Например, если x ≈ 2,3 (±0,1), то 2,2<x < 2,4.

Наоборот, если 7,3< х < 7,4, тох ≈ 7,35 (±0,05). Абсолютная или граничная абсолютная погрешность не характеризует качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина. Например если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого изменения в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой. Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью; обозначают ее так: . Относительную и граничную относительную погрешности принято выражать в процентах. Например, если измерения показали, что расстояниех между двумя пунктами больше 12,3 км, но меньше 12,7 км, то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму, тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случаех ≈ 12,5 (±0,2). Здесь граничная абсолютная погрешность равна 0,2 км, а граничная относительная

Если к ряду натуральных чисел приписать слева число 0, то получится ряд положительных целых чисел :

0, 1, 2, 3, 4, 5, 6, 7, ...

Целые отрицательные числа

Рассмотрим небольшой пример. На рисунке слева изображён термометр, который показывает температуру 7 °C тепла. Если температура понизится на 4 °C, то термометр будет показывать 3 °C тепла. Уменьшению температуры соответствует действие вычитания:

Примечание: все градусы пишутся с буквой C (Цельсия), знак градуса отделяется от числа пробелом. Например, 7 °C.

Если температура понизится на 7 °C, то термометр будет показывать 0 °C. Уменьшению температуры соответствует действие вычитания:

Если же температура понизится на 8 °C, то термометр покажет -1 °C (1 °C мороза). Но результат вычитания 7 - 8 нельзя записать с помощью натуральных чисел и нуля.

Проиллюстрируем вычитание на ряде целых положительных чисел:

1) От числа 7 отсчитаем влево 4 числа и получим 3:

2) От числа 7 отсчитаем влево 7 чисел и получим 0:

Отсчитать в ряду положительных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 - 8 стало выполнимым, расширим ряд положительных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак - , показывающий, что это число стоит слева от нуля.

Записи -1, -2, -3, ... читают минус 1 , минус 2 , минус 3 и т. д.:

5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

Полученный ряд чисел называют рядом целых чисел . Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными (кратко - положительными ).

Слева от числа 0 в этом ряду расположены числа, которые называют целыми отрицательными (кратко - отрицательными ).

Число 0 целое, но не является ни положительным, ни отрицательным числом. Оно разделяет положительные и отрицательные числа.

Следовательно, ряд целых чисел состоит из целых отрицательных чисел, нуля и целых положительных чисел .

Сравнение целых чисел

Сравнить два целых числа - значит, узнать, какое из них больше, какое меньше, или определить, что числа равны.

Сравнивать целые числа можно с помощью ряда целых чисел, так как числа в нём расположены от меньшего к большему, если двигаться по ряду слева направо. Поэтому в ряду целых чисел можно заменить запятые на знак меньше:

5 < -4 < -3 < -2 < -1 < 0 < 1 < 2 < 3 < 4 < 5 < ...

Следовательно, из двух целых чисел больше то число, которое в ряду стоит правее, и меньше то, которое стоит левее , значит:

1) Любое положительное число больше нуля и больше любого отрицательного числа:

1 > 0; 15 > -16

2) Любое отрицательное число меньше нуля:

7 < 0; -357 < 0

3) Из двух отрицательных чисел больше то, которое в ряду целых чисел стоит правее.

Натуральные числа - это те числа, с которых когда-то всё началось. И сегодня это первые числа, с которыми встречается в своей жизни человек, когда в детстве учится считать на пальцах или счетных палочках.

Определение: натуральными называют числа, которые используют для счета предметов (1, 2, 3, 4, 5, ...) [Число 0 не является натуральным. Оно и в истории математики имеет свою отдельную историю и появилось много позже натуральных чисел.]

Множество всех натуральных чисел (1, 2, 3, 4, 5, ...) обозначают буквой N.

Целые числа

Научившись считать, следующее, что мы делаем - это учимся производить над числами арифметические действия. Обычно сначала (на счетных палочках) учатся выполнять сложение и вычитание.

Со сложением всё понятно: сложив любые два натуральных числа, в результате всегда получим тоже натуральное число. А вот в вычитании обнаруживаем, что из меньшего отнять большее так, чтобы в результате получилось натуральное число, мы не можем. (3 − 5 = чему?) Здесь возникает идея отрицательных чисел. (Отрицательные числа уже не являются натуральными)

На этапе возникновения отрицательных чисел (а они появились позже дробных) существовали и их противники, считавшие их бессмыслицей. (Три предмета можно показать на пальцах, десять можно показать, тысячу предметов можно представить по аналогии. А что такое "минус три мешка"? — В то время числа хоть уже и использовались сами по себе, в отрыве от конкретных предметов, количество которых они обозначают, всё ещё были в сознании людей гораздо ближе к этим конкретным предметам, чем сегодня.) Но, как и возражения, так и основной аргумент в пользу отрицательных чисел, пришел из практики: отрицательные числа позволяли удобно вести счет долгам. 3 − 5 = −2 — у меня было 3 монеты, я потратила 5. Значит, у меня не просто закончились монеты, но и 2 монеты я кому-то должна. Если верну одну, долг изменится −2+1=−1, но тоже может быть представлен отрицательным числом.

В итоге, отрицательные числа появились в математике, и теперь у нас есть бесконечное количество натуральных чисел (1, 2, 3, 4, ...) и есть такое же количество им противоположных (−1, −2, −3, −4, ...). Добавим к ним ещё 0. И множество всех этих чисел будем называть целыми.

Определение: Натуральные числа, им противоположные и нуль составляют множество целых чисел. Оно обозначается буквой Z.

Любые два целых числа можно вычесть друг из друга или сложить и получить в результате целое число.

Идея сложения целых чисел уже предполагает возможность умножения, как просто более быстрого способа выполнения сложения. Если у нас есть 7 мешков по 6 килограмм, мы можем складывать 6+6+6+6+6+6+6 (семь раз прибавлять к текущей сумме по 6), а можем просто помнить, что такая операция всегда будет давать в результате 42. Как и сложение шести семерок 7+7+7+7+7+7 тоже всегда будет давать 42.

Результаты операции сложения определенного числа самого с собой определенное количество раз для всех пар чисел от 2 до 9 выписываются и составляют таблицу умножения. Для умножения целых чисел больше 9 придумывается правило умножения в столбик. (Которое распространяется и на десятичные дроби, и которое будет рассматриваться в одной из следующих статей.) При умножении любых двух целых чисел друг на друга всегда получим в результате целое число.

Рациональные числа

Теперь деление. По аналогии с тем, как вычитание является обратной операцией для сложения, приходим к идее деления как обратной операции для умножения.

Когда у нас было 7 мешков по 6 килограмм, с помощью умножения мы легко посчитали, что общий вес содержимого мешков составляет 42 килограмма. Представим себе, что мы высыпали всё содержимое всех мешков в одну общую кучу массой 42 килограмма. А потом передумали, и захотели распределить содержимое обратно по 7 мешкам. Сколько килограмм при этом попадет в один мешок, если будем распределять поровну? – Очевидно, что 6.

А если захотим распределить 42 килограмма по 6 мешкам? Тут мы подумаем о том, что те же общие 42 килограмма могли бы получиться, если бы мы высыпали в кучу 6 мешков по 7 килограмм. И значит при делении 42 килограмм на 6 мешков поровну получим в одном мешке по 7 килограмм.

А если разделить 42 килограмма поровну по 3 мешкам? И здесь тоже мы начинаем подбирать такое число, которое при умножении на 3 дало бы 42. Для «табличных» значений, как в случае 6 ·7=42 => 42:6=7, мы выполняем операцию деления, просто вспоминая таблицу умножения. Для более сложных случаев используется деление в столбик, которое будет рассмотрено в одной из следующих статей. В случае 3 и 42 можно «подбором» вспомнить, что 3 ·14 = 42. Значит, 42:3=14. В каждом мешке будет по 14 килограмм.

Теперь попробуем разделить 42 килограмма поровну на 5 мешков. 42:5=?
Замечаем, что 5 ·8=40 (мало), а 5·9=45 (много). То есть, ни по 8 килограмм в мешке, ни по 9 килограмм, из 5 мешков мы 42 килограмма никак не получим. При этом понятно, что в реальности разделить любое количество (крупы, например,) на 5 равных частей нам ничего не мешает.

Операция деления целых чисел друг на друга не обязательно дает в результате целое число. Так мы пришли к понятию дроби. 42:5 = 42/5 = 8 целых 2/5 (если считать в обыкновенных дробях) или 42:5=8,4 (если считать в десятичных дробях).

Обыкновенные и десятичные дроби

Можно сказать, что любая обыкновенная дробь m/n (m – любое целое, n – любое натуральное) представляет собой просто специальную форму записи результата деления числа m на число n. (m называют числителем дроби, n – знаменателем) Результат деления, например, числа 25 на число 5 тоже можно записать в виде обыкновенной дроби 25/5. Но в этом нет необходимости, так как результат деления 25 на 5 может быть записан просто целым числом 5. (И 25/5 = 5). А вот результат деления числа 25 на число 3 уже не может быть представлен целым числом, поэтому здесь и возникает необходимость использования дроби, 25:3=25/3. (Можно выделить целую часть 25/3= 8 целых 1/3. Более подробно обыкновенные дроби и операции с обыкновенными дробями будут рассмотрены в следующих статьях.)

Обыкновенные дроби хороши тем, что, чтобы представить такой дробью результат деления любых двух целых чисел, нужно просто записать делимое в числитель дроби, а делитель в знаменатель. (123:11=123/11, 67:89=67/89, 127:53=127/53, …) Затем по возможности сократить дробь и/или выделить целую часть (эти действия с обыкновенными дробями будут подробно рассмотрены в следующих статьях). Проблема в том, что производить арифметические действия (сложение, вычитание) с обыкновенными дробями уже не так удобно, как с целыми числами.

Для удобства записи (в одну строку) и для удобства вычислений (с возможностью вычислений в столбик, как для обычных целых чисел) кроме обыкновенных дробей придуманы ещё и десятичные дроби. Десятичная дробь – это специальным образом записанная обыкновенная дробь со знаменателем 10, 100, 1000 и т.п. Например, обыкновенная дробь 7/10 – это то же, что и десятичная дробь 0,7. (8/100 = 0,08; 2 целых 3/10=2,3; 7 целых 1/1000 = 7, 001). Переводу обыкновенных дробей в десятичные и наоборот будет посвящена отдельная статья. Операциям с десятичными дробями – другие статьи.

Любое целое число может быть представлено в виде обыкновенной дроби со знаменателем 1. (5=5/1; −765=−765/1).

Определение: Все числа, которые могут быть представлены в виде обыкновенной дроби, называют рациональными числами. Множество рациональных чисел обозначают буквой Q.

При делении любых двух целых чисел друг на друга (кроме случая деления на 0) всегда получим в результате рациональное число. Для обыкновенных дробей есть правила сложения, вычитания, умножения и деления, позволяющие произвести соответствующую операцию с любыми двумя дробями и получить в результате также рациональное число (дробь или целое).

Множество рациональных чисел – это первое из рассмотренных нами множеств, в котором можно и складывать, и вычитать, и умножать, и делить (кроме деления на 0), никогда не выходя за пределы этого множества (то есть, всегда получая в результате рационально число).

Казалось бы, других чисел не существует, все числа рациональные. Но и это не так.

Действительные числа

Существуют такие числа, которые нельзя представить в виде дроби m/n (где m-целое, n-натуральное).

Какие же это числа? Мы ещё не рассмотрели операцию возведения в степень. Например, 4 2 =4 ·4 = 16. 5 3 =5 ·5 ·5=125. Как умножение представляет собой более удобную форму записи и вычисления сложения, так и возведение в степень – это форма записи умножения одного и того же числа самого на себя определенное количество раз.

Но теперь рассмотрим операцию, обратную возведению в степень – извлечение корня. Квадратный корень из 16 – это число, которое в квадрате даст 16, то есть число 4. Квадратный корень из 9 – это 3. А вот квадратный корень из 5 или из 2, например, не может быть представлен рациональным числом. (Доказательство этого утверждения, другие примеры иррациональных чисел и их историю можно посмотреть, например, в Википедии)

В ГИА в 9 классе есть задание на определение того, является ли число, содержащее в своей записи корень, рациональным или иррациональным. Задача заключается в том, чтобы попытаться преобразовать это число к виду, не содержащему корень (используя свойства корней). Если от корня не удается избавиться, то число иррациональное.

Другим примером иррационального числа является число π, знакомое всем из геометрии и тригонометрии.

Определение: Рациональные и иррациональные числа вместе называют действительными (или вещественными) числами. Множество всех действительных чисел обозначают буквой R.

В действительных числах, в отличии от рациональных, мы можем выразить расстояние между любыми двумя точками на прямой или на плоскости.
Если нарисовать прямую и выбрать на ней две произвольные точки или выбрать две произвольные точки на плоскости, то может так получиться, что точное расстояние между этими точками невозможно выразить рациональным числом. (Пример – гипотенуза прямоугольного треугольника с катетами 1 и 1 по теореме Пифагора будет равна корню из двух – то есть иррациональному числу. Сюда же относится точная длина диагонали тетрадной клетки (длина диагонали любого идеального квадрата с целыми сторонами).)
А в множестве действительных чисел любые расстояния на прямой, в плоскости или в пространстве могут быть выражены соответствующим действительным числом.

Понравилось? Лайкни нас на Facebook